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disk structures: two-dimensional modeling of
near-field profiles, far-field intensities, and detector
signals from a DVD
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Rigorous two-dimensional vector-diffraction patterns of a focused beam incident on an optical disk,
specifically, a digital versatile disk ~DVD!, are examined both in the near field and in the far field. An
efficient finite-difference frequency-domain method is developed for calculating the electromagnetic fields
in the neighborhood of subwavelength dielectric and metallic structures. The results of vector-
diffraction theory are compared with those of scalar-diffraction theory for pressed DVD features that
consist of pits or of bumps. The sum ~data! and difference ~tracking! signals from a split photodetector
are also calculated for different disk features and for different polarizations. The subwavelength fea-
tures of a DVD result in considerable vector-diffraction effects both in the near-field profiles and in the
detector signals, depending not only on the polarization of illumination but also on whether the features
are pits or bumps. This paper provides important insight into the vector-diffraction effects encountered
in high-density optical data storage systems. © 1999 Optical Society of America
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1. Introduction

Fast progress in nanotechnology and in microelec-
tronics fabrication has led to numerous engineered
structures that, in size, are comparable with or
smaller than the wavelength of visible light. For
optical data storage systems smaller spot size is a key
requirement for high-density recording. In fact, the
digital versatile disk ~DVD!, which is becoming the
new standard for multimedia distribution, has a min-
imum feature size that is smaller than the readout
laser wavelength ~see Section 4!. Since optical stor-
age systems can employ various polarizations of in-
cident light, and since features on the DVD have
dimensions smaller than the wavelength of the laser
light, the reflected light signals are expected to show
a strong polarization dependence. Theoretical mod-
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eling and analysis of these polarization effects re-
quire rigorous vector-diffraction theory for dealing
with material boundaries.

Inspired by the exciting development in near-field
optics and in near-field microscopy,1–4 certain new
types of optical storage system make use of near-field
signals from the disk surface to surpass the conven-
tional resolution limit and to achieve a substantially
higher storage capacity. From the early stages of
near-field optical microscopy there were numerous
proposals for data storage systems that use the tip of
an optical fiber5 or a subwavelength slit-type probe6,7

to pick up near-field signals from optical disks. A
promising alternative to this approach is the solid
immersion lens, which employs an objective lens that
flies tens of nanometers from the surface of the stor-
age medium.8–11 Detailed understanding of these
systems requires the study of near-field profiles on
the disk surface. Although there are numerous
modeling studies of near-field optical systems, little
published research on near-field optics7,12,13 has fo-
cused on high-density optical data storage systems.

To investigate vector diffraction from optical disks
~or the closely related problem of vector diffraction
from a grating with a finite number of periods!,
arious numerical algorithms such as the finite-
ifference time-domain ~FDTD! method,14,15 mode-
10 June 1999 y Vol. 38, No. 17 y APPLIED OPTICS 3787
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matching methods, the boundary element
method,21–24 and the integral method25–27 have been
used. Previous research on the subject can be subdi-
vided into several types of configuration: plane fields
incident on perfectly conducting structures17,20 or di-
electric structures,21 plane fields incident on realistic
metallic structures,13,24,25,28 focused fields incident on
perfectly conducting structures,18,19,22,26,27 and focused
fields incident on realistic metallic structures.14–16,23,29

Until recently,26,27,29 little attention was paid to the
modeling of the DVD configuration, which has features
smaller than the wavelength of the laser light that
would cause considerable vector-diffraction effects in
near-field distributions, far-field intensities, and detec-
tor signals. Most of the previous studies modeled var-
ious optical disk configurations with considerably
larger features.

Several of these studies emphasized especially the
detector signals generated by an optical disk. De-
pine and Skigin28 illustrated that there are notable
differences between the signals from a perfect con-
ductor and those from a highly conducting metal.
Kobayashi18 used vector-diffraction theory to treat a
ocused, truncated Gaussian beam @numerical aper-

ture ~NA! is 0.6# incident on a rectangular, perfectly
onducting grating. He examined the dependence of
he readout and servo signals on the incident polar-
zation, the depth of grooves and pits, and the feature
ize. Gerber and Mansuripur30 experimentally ob-

served that, when the incident medium is air, the
detector signals from metal-coated surfaces differ sig-
nificantly for the two incident polarizations. Jud-
kins et al.15 simulated a two-dimensional rewritable
optical disk with the FDTD method and experimen-
tally validated the tracking performance.

In this paper we discuss the modeling of a DVD
optical storage system with rigorous vector-
diffraction theory and present results for the near-
field distributions, the far-field intensities, and the
detector signals. For this purpose we developed an
efficient FDFD method for calculating the electro-
magnetic fields in the neighborhood of realistic di-
electric and metallic subwavelength structures to a
high accuracy.29 Our two-dimensional simulation
treats the rigorous vector diffraction of a focused po-
larized Gaussian beam that interacts with two-
dimensional aperiodic pressed disk structures. We
explore different DVD configurations that contain ei-
ther pits or bumps in the disk surface ~see Section 4!.
The signals from a split detector show a strong de-
pendence on the polarization of the incident light and
on the geometry of the features on the disk. Our
results demonstrate that the vector diffraction effects
of the DVD configuration are more significant than
those of earlier optical formats discussed in previous
studies. Most notable is the large difference be-
tween the results for a disk with pressed pits versus
those for one with pressed bumps.

2. Numerical Methods

Since we are interested in steady-state phenomena,
the electromagnetic field can be assumed to be time
788 APPLIED OPTICS y Vol. 38, No. 17 y 10 June 1999
harmonic and the FDFD method can be used to solve
the time-harmonic Maxwell equations. In source-
free media that are nonmagnetic, isotropic, and in-
homogeneous the time-harmonic Maxwell equations
may be written as

¹ 3 E 5 ivH,

¹ z ~eE! 5 0,

¹ 3 H 5 2iveE,

¹ z H 5 0, (1)

here E is the electric field, H is the magnetic field,
e is the complex electric permittivity, v is the angular
frequency, and a time dependence of exp~2ivt! has
been assumed. The information about material
properties is included in e. With elimination of the
magnetic field the Maxwell equations become

¹2E 1 v2eE 5 ¹~¹ z E!, (2)

¹ z ~eE! 5 0. (3)

Equation ~2! is in the form of a coupled general
Helmholtz equation and is the main equation we
worked on. With properly imposed boundary condi-
tions and grid geometry the divergence equation is
satisfied automatically.31,32 To solve Eq. ~2!, we
ombine several techniques to develop an efficient
nd ~to our knowledge! a novel FDFD method.

A. Concus–Golub Iteration

Concus and Golub33 have proposed an iteration
scheme based on a fast cyclic-reduction Helmholtz
solver34–36 for the repeated solution of Helmholtz-like
equations. This method exploits the sparcity of the
discrete Helmholtz equation and can handle separa-
ble equations of the form

¹2E~y, z! 1 v2e0~z!E~y, z! 5 f ~y, z!, (4)

where f ~y, z! is an arbitrary source term. This equa-
tion can describe the layered optical disk structure.
The cyclic reduction method can produce fast direct
solutions at O~3n2 log n! for an n 3 n matrix, has a
small memory requirement, and can be well parallel-
ized.37,38

In Eq. ~2! each component has the form of a general
Helmholtz equation

@¹2 1 v2e~y, z!#Ei 5 ¹i~¹ z E!, (5)

where the source term is the component from ¹~¹ z E!.
The unknown electric field can be solved with the
Concus–Golub iteration method. Specifically, for
the kth iteration we use the expression

~¹2 1 v2e0!Ei
k 5 2v2@e~y, z! 2 e0#Ei

k21 1 ¹i~¹ z Ek21!.

(6)

It has been demonstrated with finite differences33

that the number of necessary iterations can vary dra-
matically depending on the function e~y, x!. Usu-
ally, the smoother e~y, x! is, the faster the rate of
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convergence. When the Concus–Golub iteration
method does not converge, we use the conjugate gra-
dient method to overcome this difficulty.

B. Conjugate Gradient Method

Conjugate gradient methods are probably the most
popular iterative techniques for solving systems of
linear equations. They are often referred to as sub-
space iteration methods, because they solve a system
of linear equations A x 5 b by minimization of qua-

ratic functionals in Krylov subspaces, which are
panned by a series of vectors generated by repeated
ultiplication by A.
The Concus–Golub iteration can be used as a good

preconditioner in conjunction with a robust re-
started general minimal residual conjugate gradi-
ent method39 to fully solve for electric fields to a
very high accuracy.40 From numerical experi-
ments it was found that the internal iterations that
correspond to the Concus–Golub preconditioner do
not need to converge to reach optimum computing
performance.40

C. Radiation Boundary Condition

To solve the Maxwell equations in an infinite domain
numerically, for example, in diffraction or scattering
problems, it is usually necessary to limit the compu-
tation to a finite domain and to impose a radiation
boundary condition on the outer edge of the numeri-
cal grid. The purpose of the radiation boundary con-
dition is to absorb the scattered or radiated fields
when they arrive at the grid edge and to simulate
boundless free space.

The Engquist–Majda41,42 and the Mur43 radiation
oundary conditions and their variations have been
requently used in FDTD calculations. Although
heir original formulations are derived in FDTD
ramework, it is straightforward to adapt them to
requency-domain format. In this paper we use Hig-
on’s variation of the second-order finite-difference
adiation boundary condition:44,45

FScos a1 2
i
k

]

]zDScos a2 2
i
k

]

]zDGE 5 0, (7)

here a1 and a2 are the optimal angles for minimal
reflection. The ẑ direction is the primary direction of

ave propagation in our case, and the angles a1 and
2 are zero. This boundary condition is equivalent

to the second-order Engquist–Majda radiation
boundary condition,44 but it is better suited for the
cyclic reduction method, because it involves the de-
rivative in only one direction.

3. Configuration

The surface of a DVD-ROM disk ~ROM means read-
only memory! consists of a polycarbonate substrate
overed with aluminum with tracks of pressed pits
Fig. 1!. We consider a simplified two-dimensional
odel to simulate the vector diffraction from these

its. When the geometry of the structure is two di-
ensional, the problem decomposes into two inde-
endent polarizations. We define TE polarization to
e the case when the electric field is perpendicular to
he plane of incidence and parallel to the pits and TM
olarization to be the case when the electric field is in
he plane of incidence.

The complex indices of refraction are n 5 1.6 for the
olycarbonate substrate and n 5 1.5 1 7.8 i for the

aluminum reflection layer. The wavelength in vac-
uum of the incident laser light is l 5 650 nm. Con-
sequently, the wavelength in the polycarbonate
substrate is ls 5 406 nm. The normal-incident two-
dimensional Gaussian beam has a FWHM of approx-
imately 600 nm, which corresponds to an objective
lens NA of 0.6.

In the numerical calculations there are five pits on
the disk surface. The ~average! width of the pits is
250 nm, the track pitch or distance between the pits
is 740 nm, and the sidewall angle is 20 deg. The
depth of the pits is varied between 0.1 and 0.8 ls, and
the position of the laser relative to the center pit is
varied between 0 and 1 ls. To study the effects of
different geometries on the signals, we also examined
diffraction from five bumps @see Fig. 1~b!#.

The computation box is set to 5 ls ~'2.03 mm! in the
z direction and 12 ls ~'4.87 mm! in the y direction.
There are 40 grid points in each wavelength located
in a Yee cell46 in two-dimensional space. We would
like to emphasize the importance of using a Yee cell
geometry, since it maintains consistency between the
discrete forms of the first and the second derivatives
in Maxwell equations ~2! and ~3!.

4. Near Fields

Figures 2 and 3 show color maps of the electric fields
in the neighborhood of the center pit for two typical
cases. The pit heights are d 5 0.3 ls ~'120 nm! and

5 0.6 ls ~'240 nm!, respectively. The field shown
here is the total field, which includes both the inci-
dent and the diffracted fields. For TE illumination

Fig. 1. Cross section of the two-dimensional model of the DVD
surface. The axes are in units of wavelengths. ~a! Disk with
pits, ~b! disk with bumps.
10 June 1999 y Vol. 38, No. 17 y APPLIED OPTICS 3789
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there is only an Ex component present, whereas for
M illumination there are both Ey and Ez compo-

nents that are coupled together. The first case, d 5
.3 ls, shows strong destructive interference that

sends much of the reflected light outside the NA of
the objective lens, whereas the second case, d 5 0.6
ls, shows constructive interference that causes mir-
rorlike reflection. The phase graphs depict clearly
the phase fronts, indicative of the direction of wave
propagation. It should be noted that, in the TM
case, the Ez component shows propagation in the y
direction. This indicates that evanescent fields con-
tribute to this component, though the magnitude of

Fig. 2. Near-field profile of ~a! the Ex component for TE illuminat
M illumination. The pit height is 0.3 ls. The unit of length her

nm.
790 APPLIED OPTICS y Vol. 38, No. 17 y 10 June 1999
these evanescent fields is small, especially for the 0.6
ls pit.

Figures 4–7 show the amplitude of the electric
elds near the middle pit ~or bump! for pit heights ~or
ump heights! between 0.1 and 0.8 ls ~'40–320 nm!.
e show only the Ey component of the TM case,

because it is generally the dominant component for
this polarization. The flatness of the surface of con-
stant amplitude in these figures is related to the de-
gree of constructive or destructive interference in the
reflected field. It is therefore possible to anticipate
the far-field behavior in Section 5 directly from the
near-field results.

b! the Ey component for TM illumination, ~c! the Ez component for
in subsequent figures is the wavelength in the substrate ls 5 406
ion, ~
e and



T

In Fig. 4, for TE illumination, there are strong
peaks, not only in front of the pit but also adjacent to
it. With increasing pit height a visible resonant
mode emerges in the space between the pits. The
resonant mode is even stronger for the bump config-
uration in Fig. 6. The main difference between the
two configurations is that there is a single resonant
peak in the bump case, whereas there are two reso-
nant peaks on opposite sides of the center pit in the
pit case. The TM near-field profiles are significantly
different from the TE ones. Initially, for small pit
heights, the amplitude of the primary component of
the electric field is nearly the same for both polariza-
tions and is also quite similar to that for the bump

Fig. 3. Near-field profile of ~a! the Ex component for TE illuminat
M illumination. The pit height is 0.6 ls.
configuration. For small feature heights one expects
all four cases to be similar to the predictions of scalar
theory. However, the similarity diminishes with in-
creasing pit height. It is interesting to note that, for
the bump configuration with TM illumination, a node
begins to appear in the resonant mode when the
bump height is larger than 0.3 ls, and a second node
appears when the bump height is larger than 0.7 ls.

It is well known that in near-field optics measure-
ments the fields detected by a small tip are propor-
tional to those found in the absence of the tip.47,48 We
can easily observe what a near-field probe would pick
up from Figs. 4–7 ~assuming the polycarbonate sub-
strate is removed!. Madrazo and Nieto-Vesperinas

b! the Ey component for TM illumination, ~c! the Ez component for
ion, ~
10 June 1999 y Vol. 38, No. 17 y APPLIED OPTICS 3791
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calculated the near fields of two adjacent deep
Gaussian-shaped grooves.13 They found that at a
plane z 5 2z0, where z0 is a small fraction of the
wavelength, the near-field intensity distribution
closely follows the groove profile in the TE case ~s
polarization in their paper!, but not for the TM case ~p
polarization in their paper!. Our results confirm
their conclusion for both the bump and the pit config-
uration when the heights are small. However, with
increasing bumpypit height, the resonance peaks in
the TE case are difficult to identify with the position of
the bump or pit. This is especially true for d ' 0.5 ls
when constructive interference masks the presence of
a feature. The very narrow groove used in their cal-
culations is probably responsible for this difference.

5. Far Fields

To calculate the far fields, the near-field pattern is
sampled inside the mesh and the far-field distribu-
tion is calculated with a simple transform based on
the Franz variation of Huygens’ principle with a far-
792 APPLIED OPTICS y Vol. 38, No. 17 y 10 June 1999
zone approximation to the Green’s function. For ex-
ample, for the Ex component,

Ex~u! 5 A~R! * dy exp~iky sin u!SEx cos u 1
]Ex

]z D ,

(8)

where u is the angle with respect to the normal di-
rection, A is a proportionality coefficient that depends
only on the distance R to the observation point, and
k 5 vyc. The transform takes the transverse com-
ponents of the scattered field along a plane above the
surface of the disk and projects those components
onto a circle in the far field.

Figure 8 shows the far-field intensities in the nor-
mal direction for the TE, TM, and scalar cases as a
function of pit and bump height. Both polarizations
have first minima around a pit height of 0.3 ls ~'240
nm!, which is therefore the optimal height for maxi-
mum contrast. The effective phase depth for TE po-
larization is less than in scalar-diffraction theory,
Fig. 4. Near-field profile of the amplitude of the Ex component for
TE illumination. The pit heights are varied between 0.1 and 0.8 ls.
Fig. 5. Near-field profile of the amplitude of the Ey component for
TM illumination. The pit heights are varied between 0.1 and 0.8 ls.
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whereas for TM polarization it is nearly the same as
scalar theory. As the pit height becomes larger, the
deviation between the TE results and scalar theory
increases. For the bump configuration the TM and
the scalar results remain similar to the pit configu-
ration, but the TE case exhibits an even more signif-
icant delay in phase depth. The significant phase
depth difference between the TE and the TM cases
can be related to the near-field resonant modes.26,27

It is interesting to note that, for both pit and bump
configurations, the scalar-theory maximum that oc-
curs at 0.5 ls is significantly smaller than the corre-
sponding maximum for vector theory. Our
calculations indicate that this difference is due to a
large contribution from evanescent waves in scalar
theory at this height. This artifact is not present in
vector theory.

The angular distribution of the far fields is shown
in Fig. 9. It should be noted that, when diffraction in
the normal direction is small, two strong sideband
peaks contain most of the diffracted light intensity.

Fig. 6. Near-field profile of the amplitude of the Ex component for
E illumination. The bump heights are varied between 0.1 and
.8 ls.
Since there are five pits or bumps in our configuration
and since the FWHM of the incident Gaussian beam
is less than the distance between adjacent pits or
bumps, the angular distributions are similar to those
for an infinite grating. The deviation from the infi-
nite grating case reflects the effect of the finite num-
ber of pits or bumps in our configuration. We found
that, when the focal point moves from the center to
one side, this deviation becomes larger. Further-
more, the TM case is more sensitive to the actual
number of pits or bumps than the TE case, probably
owing to strong surface current effects. In Section 6
we show that the difference signal is particularly
sensitive to the finite number of pits or bumps.

In a usual DVD player the incident field is circularly
polarized. The results for the far-field intensity of
circularly polarized illumination is approximately the
average of the TE and the TM cases. Therefore, the
intensity and the phase depth for circularly polarized
illumination is expected to be more similar to scalar
theory. However, because of the difference of phase

Fig. 7. Near-field profile of the amplitude of the Ey component for
M illumination. The bump heights are varied between 0.1 and
.8 ls.
10 June 1999 y Vol. 38, No. 17 y APPLIED OPTICS 3793
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depth between the TE and the TM cases, the ellipticity
and the direction of the polarization ellipse of the dif-
fracted field would change relative to those of the in-
cident field.

Fig. 8. Far-field intensities in the normal direction as functions of
~a! pit and ~b! bump heights. Solid curve, TE illumination;
dashed curve, TM illumination; dotted curve, scalar theory.

Fig. 9. Angular distributions of far-field intensities for pit and bu
configuration. Solid curve, TE illumination; dashed curve, TM il
794 APPLIED OPTICS y Vol. 38, No. 17 y 10 June 1999
6. Detector Signals

The irradiance pattern in the pupil of the objective
lens after reflection from the disk can be obtained
directly from the angular distribution of the far fields.
~In three-dimensional optical disk diffraction this pu-
pil irradiance distribution is often called the baseball
pattern.49–51! We investigated the dependence of
the signals from a split detector in the pupil plane on
the polarization of the incident beam and on the geo-
metrical parameters of the disk. The sum of the two
split cells, ISUM 5 I1 1 I2, provides the data signal,
and the difference, IDIF 5 I1 2 I2, provides a push–
pull signal for tracking servo control. When the
beam is precisely centered on the pitybump, the ir-
radiation distribution is symmetric with respect to
the detector halves, so IDIF is zero. When the beam
moves away from the exact center, an asymmetrical
distribution of intensity arises on the detector, pro-
ducing a nonzero difference signal. It should be
noted that, in practice, push–pull tracking is not used
on DVD-ROM disks, because these disks are opti-
mized for maximum data contrast, which results in
poor push–pull tracking performance. Instead, dif-
ferential phase detection provides tracking servo con-
trol in the DVD-ROM. However, the push–pull
tracking signal is still of interest here, because it is
used on writable DVD’s and because it is sensitive to
asymmetries in the far-field pattern.

Figure 10 shows the results from our calculations
for the sum signal from different pit and bump
heights. The detector signals are quite different for

heights varied from 0.1 to 0.8 ls. ~a! Pit configuration, ~b! bump
ation. Horizontal axis, diffracting angle in polycarbonate.
mp
lumin



the two incident polarizations and are also different
for the two feature geometries, i.e., pit and bump.
As might be expected, the sum signals are similar to
the far-field intensities in the normal direction shown
in Fig. 8 and change only slightly when the focal point
moves away from the center. Figures 11 and 12
show contour plots of the difference signal as a func-
tion of both pitybump height and displacement of the
beam with respect to the center of the pitybump.
The distance between adjacent pits or bumps is 1.82
ls. Therefore the magnitude of IDIF should be max-
imized when the displacement of the focus is approx-
imately 0.45 ls and should come back to zero when
the displacement is 0.91 ls. For TE polarization
IDIF comes back to zero precisely halfway between
two tracks, as would be expected for an infinitely long
array of pits or bumps. However, we found that for
TM polarization IDIF does not return to zero exactly
at the center point, which shows asymmetry due to

Fig. 10. ISUM as a function of pit and bump heights.

Fig. 11. Contour plot of IDIF as a function of pit height and displa
center pit for the TE and the TM cases.
the finite-number pits or bumps in our configuration.
This asymmetry may also imply a higher cross-talk
level for TM polarization than for the TE.

In the pit configuration the first tracking signal
amplitude maximum occurs at a height of ;0.2 ls for
the TE case and ;0.15 ls for the TM case. In the
bump configuration the first maximum is at ;0.25 ls
for the TE case and at ;0.1 ls for the TM case. The
large difference between the tracking signal results
for the two polarizations of incident light is consistent
with previous research, especially since we use a
metal surface and a NA of 0.6 in these calculations.
For comparison scalar theory predicts an optimal
tracking height of 0.125 ls for all four cases. Note the
periodic sign reversal that occurs with increasing
height.

7. Conclusion

The near-field diffraction and the far-field diffraction
of a focused laser beam incident on a two-dimensional
DVD surface has been investigated with what to our
knowledge is a new FDFD method. The results of
vector-diffraction theory have been compared with
those of scalar-diffraction theory, and we have ob-
served that different polarizations of the incident
beam lead to significant differences in the detector
signals and also potentially in the level of cross talk
between tracks. Another important deviation from
the scalar-diffraction theory is that there are signif-
icant differences between the results for a pit and
those for a bump. These differences are especially
important for experimental work aimed at optimizing
DVD’s for readout and for tracking. As data densi-
ties are increased further, vector-diffraction effects
will become even more important with the higher

nt of the focus point of the incident Gaussian beam relative to the
ceme
10 June 1999 y Vol. 38, No. 17 y APPLIED OPTICS 3795
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NA’s and smaller disk features used in these systems.
For rigorous analysis of light from high-NA systems
that interact with subwavelength three-dimensional
disk features a three-dimensional model is under de-
velopment.

Although the choice of data density and servo
schemes associated with a particular new optical stor-
age device will be determined by several variables, it is
essential that detailed modeling of the various inter-
actions be performed. With numerical simulation
one can more readily evaluate the alternatives while
independently varying different parameters. This is
not easily or cheaply accomplished with an experimen-
tal setup, and therefore numerical modeling provides
an important aid in the design of optical storage sys-
tems.

This research can serve as a design tool for future
optical storage systems and can also be applied to
near-field calculations of other small-scale optical
systems. With various new approaches to optical
data storage systems that pick up near-field signals
from the surface of the storage medium it is essential
to gain more insight about near-field profiles.

We thank J. H. Eberly for invaluable discussion
and advice. This research was supported by the Na-
tional Science Foundation ~grant PHY-94-15583! and
Eastman Kodak Company. Computational facili-
ties were supported by Eastman Kodak Company
and the University of Rochester.
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