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Device Features

Very wide active area

⊥⊥⊥⊥ grating (ΛΛΛΛ) direction

Digital operation

>2000:1 contrast

>60% multiorder efficiency

Typical Dimensions

Grating period = 15 to 50 µµµµm

Actuation depth = 150 to 200 nm
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GEMS Device Structure and Operation 

The GEMS device consists of a linear array of pixels with electromechanical 

ribbons suspended above a hidden grating 

Typically

Pitch = 15 to 50 µµµµm

Actuation Depth = 150 to 200 nm

Metal
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s

Silicon Substrate

Periodic 

Support

Cross-Sectional View

Grating ElectroMechanical System
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GEMS Device Wafer

6" GEMS Wafer 

Stitched Linear Array 

(1 mm active area width)

Scalable 

Resolution

1080

2160

3240

Very Wide Active Area Device

(10 mm x 20 mm active area)

18 µµµµm

36 µµµµm

or Pixel Size 
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1080-Pixel GEMS Linear Array

ΛΛΛΛ = 36 µµµµm
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Pixel #1      ON  . . . . . 

Pixel #2      OFF. . . . . . 

Pixel #3      ON. . . . . . .  

Pixel #4      OFF . . . . . .

Incident Beam

Line Illumination

� ON pixels diffract light and the diffractive orders are 

collected to form a line image

Optical Stop

� OFF pixels reflect light, which is blocked by an optical stop

Optical System Principles
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Response to High-Speed Input Signal

The fast switching speeds of the GEMS device enable a 2D display 

with a 1D linear array

~30 nanosecond digital operation

GEMS Device High-Speed Response 
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Example of Response to 

Random PWM Data Stream

Response times ~30 ns 

and  jitter <0.5 ns

The fast switching speeds allow for the generation of gray scale 

through pulse width modulation (PWM)

PWM Gray Scale Generation



9

D
e
v
ic
e
 O
F
F

Ribbon
Incident 

Beam

Reflected 

Beam
Intermediate

Support

Silicon

Substrate

Metal

D
ie
le
ct
ri
cs

Reflective (Off) State Λ

h

bs

bc

Diffractive (On) State

D
ev
ic
e
 O
N

Incident 

Beam

Diffracted 

Beams

Diffracted 

Beams

ΛΛΛΛ

+1st

+2nd

−1st

−2nd

Diffracted

Orders
Diffracted

Orders

Opto-Electromechanical Device Model

Standoffs

Red: Si3N4

Blue: SiO2

• GEMS period (Λ)

• Support width (bS)

• Channel depth (h)

• Ribbon width

• Ribbon gap

• Ribbon dielectric thickness

• Ribbon metal reflector

• Standoff separation

• Standoff height

1. Pull-down & 

operating voltage

2. Ribbon profile

3. Diffraction efficiency 

Opto-Electromechanical 

Model
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Device Model: Critical Voltages, Contact Length & Efficiency
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Laser Display
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RGB Display Lasers (early 2000s) 
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Compact RGB Display Lasers (now)

And many others

in development
(OSRAM, Mitsubishi, �)

Novalux Necsel
(now Necsel)

Multi-Watt

Corning Green Laser
(waveguide SHG)

100–300 mW

Nichia Blue Laser Diode

50 mW–1 W
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Laser Projection Display

� Realization of low-cost, high-power RGB lasers enables

• Projected images with large-screen diagonal (front or rear)

• Color with extreme saturation, when desirable

• Light source having long lifetime

• Low cost per diagonal inch

• Efficient use of light

• High energy efficiency

• Compact, lightweight systems

� A low-cost, high-performance light modulator is also 

required
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Modulator Options

� 2D Spatial Light Modulator and no scanner – e.g., DMD

• Example:  Mitsubishi Laservue TV (see laservuetv.com)

• Challenging to achieve full HD resolution without artifacts at low cost

� No Spatial Light Modulator and 2D laser scanner – e.g., MEMS raster 
scanner with direct diode modulation

• Example:  Microvision pico-projector (see www.microvision.com)

• Low-cost solution

• Full HD challenged by scanner resolution and laser modulation speed

• Difficulties with speckle reduction and laser power scalability

� 1D Spatial Light Modulator and 1D scanner

• Resolution is easily scalable

• Excellent image quality

• Low-cost solution at high resolution
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Laser
Cantilever Array

History: MEMS Cantilevers (1978)

K. E. Petersen, IEEE Trans. 

Electron Devices 25 (1978)

Lamp

History: Scophony (1938)

Liquid Light 

Modulation

Scophony Projection Television Manual 

(www.tvhistory.tv)

Laser

GLV Pixel

History: Grating Light Valve (1992 – Present)

Grating Light Valve Display Device, (Sony Corporation, 2002)

D. Corbin et al., Grating Light Valve and Vehicle Displays, (www.siliconlight.com)



Three-Chip Front-Projection Laser Display Prototype
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Resolution 1920 (H)

1080 (V)

Frame Rate 60 Hz

Screen Size 115 inch

Native Bit Depth 11 bit/color

(PWM)

System Contrast 

Frame-sequential >1500:1

ANSI Checkerboard >250:1
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GEMS Front-Projection Prototype: 

Photograph of Scene from Scanned Motion Picture Film

Image Color Setting: Natural Mode
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GEMS Laser Display (color filled)

TV Standard (ITU 709) (dotted)

High End LCOS (solid)

High End DMD (dashed)

Color Gamut

Photograph of  Computer-Generated Imagery

Image Color Setting: Full Gamut Mode



Three-Chip Front-Projection Laser Display Prototype
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Propagation of Diffracted Light Beams
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� Perpendicular orientation of GEMS grating period enables

(a)  Diffracted beams to be separated throughout system (except at image plane)

(b)  On-axis illumination path before projection lens

(c)  Collection of multiple diffracted beams with relatively small projection lens

� Small scanning mirror is placed near Fourier transform plane of projection lens

Light Propagation Model
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To separate diffracted orders:  sin θθθθI < λ/Λλ/Λλ/Λλ/Λ

For a Gaussian laser beam:  FWHM ≈ 0.55 λλλλ/sin(θθθθI /2)

Therefore, FWHM > 1.1 ΛΛΛΛ [In practice FWHM ≈ 1.5 ΛΛΛΛ]

Separation of Diffracted Orders
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Laser Projector Architecture 1: Three-Chip System
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Combines advantages of three-chip architecture with those of single-

chip architecture

� Simple optical architecture 

� Maximum laser power utilization and brightness

� Best image quality

Trilinear Array

(front view) 
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Laser Projector Architecture 2: Multilinear Array System
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Four-Color System with Two Bilinear GEMS Arrays

Laser Projector Architecture 3:



28

GEMS Device Efficiency Model

Optimized GEMS System Collects:  4 or 6 orders for Red  (curve b or c)

6 orders for Green  (curve c)

6 or 8 orders for Blue  (curve c or d)
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Efficient GEMS device can be fabricated using the same design for 

all three colors

Note: RGB wavelengths are 630 nm, 530 nm, and 450 nm for model

Device Efficiency Model for RGB System
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Vertical Resolution (device pixels) 1080 2K – 4K

Horizontal Resolution (scan) 1920 4K – 8K

Frame Rate                                         60 Hz 60 Hz

Display Bit Depth (per color) 11 bit >11 bit native

System Contrast (ANSI) 250:1 >500:1

System Contrast (frame-sequential) 1500:1 >5000:1

Data Stream Content                         interlaced progressive

Performance Demo Ultimate

GEMS Laser Projection System



High Image Quality 

� Laser primaries for wide color gamut with bright, saturated colors

� Extremely high and scalable resolution for sharp, crisp images

� High native bit depth for billions of noise-free colors per pixel

� Reduced pixelization

� No motion artifacts

Simple GEMS-Based Design

� Alignment and defect tolerant design

� Digital operation

� Compact optical components

� Low-cost modulator and optics

Extendable System

� Easily scalable linear array

� Programmable aspect ratio

� Flexible frame rate

System Architecture Options

� Single chip or three chip

� Multilinear arrays for high performance at low cost

Technology Benefits 
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Potential Applications

GEMS Laser Display

� Front projection

� Rear projection laser TV

� Data visualization and simulation

� Command and control

� Panoramic workstations

� Heads-up displays

� Mobile projectors

Other Systems

� Laser printing

� Maskless lithography

� Light modulation

� Programmable spectral imaging

� O
Flight Training Simulator
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PROGRAMMABLE

SPECTRAL IMAGING
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Multispectral imaging systems are used in a variety of applications where 

conventional RGB imaging does not adequately reveal spectral features of interest.

� Application areas: remote sensing, medical, and biological imaging, �

For example, the 4-band multispectral image below shows vegetation regions (false red) that 

are not visible in the natural color image.

Challenge: Create an imaging system with a programmable spectral 

transmission function that provides high-resolution line-scanned imaging.

Multispectral Imaging: Introduction

3-Band Natural Color 

Image of Forest Fire

4-Band Image of Forest Fire 

with False Color Infrared

DigitalGlobe DigitalGlobe
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Line 

Image Dispersive

Element

(grating)

Filtered

Line Image

Linear

CCD

De-dispersive

Element

(grating)

GEMS acts as an optical “switch” that 

passes (or extinguishes) narrow spectral 

channels

System Concept

� Spectral band selection approach:

� Line image dispersed by a grating onto a Spatial Light Modulator (SLM)

� Electronic control of SLM provides selection of wavelength bands for imaging

� Selected bands are de-dispersed and re-imaged on a detector array

� 2D image is captured by line scanning across object of interest  
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Key Features
� High-speed spectral tuning

� Excellent image quality

� 32 spectral bands (current configuration) 
450–566 nm: 12 bands with ~10 nm bandwidth
566–634 nm: 14 bands with ~5 nm bandwidth
634–692 nm: 6 bands with ~10 nm bandwidth

GEMS-Based Programmable Spectral Imager

GEMS acts as a 

“spectral switch”
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Entire Image

(17 mm of 19.44 mm)

Enlarged 4X

Enlarged 16X

Test Object

Ronchi ruling (12 lp/mm)

Camera

Olympus E-1 (5 megapix)

Breadboard Image Quality
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An Interesting CombinationO

Programmable Spectral Imaging and Broad Gamut Display

Both with GEMS-based Systems
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Ultratech Nano160

(1X projection; backside alignment) TEL Mark VII Coat/ 

Develop Track

LPCVD and Atmospheric 

Furnace Processes

Chemical-

Mechanical 

Polishing 

and Grinding
Veeco 3-Chamber Sputter Tool

Ultratech XLS 

Stepper

(4X projection; 

0.35 µm 

resolution)

ITC MEMS Wafer Fab 



Leybold Reactive Evaporator 

for Optical Glasses

Xactix XeF2 Sacrificial Etch
STS Si 

Deep RIELAM Alliance 

Cluster Tool 

ITC MEMS Wafer Fab 
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Suss ABC200 Automated 
Wafer Bond Cluster Plating Bench

Asymtek Automated Fluid 

Dispensing system Ohmcraft Micropen 

Flip Chip

Bonders

SEC 860 Omnibonder

Suss FC150

Hesse & Knipps Automated 

Wedge Wirebonder

ADT 7200 Automated 

Dicing Saw

ITC MEMS Packaging
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ITC Laser Microscopy System for GEMS Device Screening
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GEMS Diffracted Orders

Near Detector

Laser, Optics

& Detector

Laser, Optics & Detector

• Custom-modified high-quality 

microscope with laser probe beam 

for initial device screening

• System is configured to measure 

GEMS diffracted orders

• Provides feedback on device 

fabrication & packaging processes
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GEMS Wafer from ITC
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Thank You !

e-mail: marek.kowarz@itcmems.com

website:  www.itcmems.com
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